IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 23 September 2024, accepted 4 November 2024, date of publication 8 November 2024,
date of current version 26 November 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3494057

==l RESEARCH ARTICLE

Lightweight Federated Learning for Efficient
Network Intrusion Detection

ABDELHAK BOUAYAD !, HAMZA ALAMI2, MERYEM JANATI IDRISSI', AND ISMAIL BERRADA'
!College of Computing, Mohammed VI Polytechnic University (UM6P), Ben Guerir 43150, Morocco

2Laboratory of Informatics, Signals, Automatics, and Cognitivism (LISAC), Faculty of Sciences Dhar El Mahraz, Sidi Mohammed Ben Abdellah University, Fes
30003, Morocco

Corresponding author: Abdelhak Bouayad (abdelhak.bouayad @um6p.ma)

ABSTRACT Network Intrusion Detection Systems (NIDS) play a crucial role in ensuring cybersecurity
across various digital infrastructures. However, traditional NIDS face significant challenges, including high
computational and storage costs, as well as privacy risks. To address these issues, we introduce a novel
method called “Lightweight-Fed-NIDS,” which harnesses federated learning and structured model pruning
techniques for NIDS. The primary advantage of our contribution lies in the one-time computation of the
pruning mask, without the need to access clients’ data. This mask is then distributed to all clients and utilized
to prune and optimize their local models. Furthermore, we leverage the power of Convolutional Neural
Network (CNN) architectures, including ResNet-50, ResNet-101, and VGG-19, to extract essential features
from raw traffic flows. We evaluate the performance of our method using various NIDS benchmark datasets,
such as UNSW-NB15, USTC-TFC2016, and CIC-IDS-2017. Our technique achieves up to a 3X acceleration
in training time compared to traditional, unpruned federated learning models, while maintaining a high
detection rate of ~ 99%. Additionally, our method reduces model size by 90%, demonstrating its efficiency
and scalability for real-world NIDS deployments. These results highlight the potential of Lightweight-Fed-
NIDS to enhance network security while addressing privacy concerns and resource constraints in distributed
environments.

INDEX TERMS Network intrusion detection system, federated learning, pruning, deep learning.

I. INTRODUCTION

In today’s interconnected world, network security has
become a critical concern for organizations of all sizes.
The increasing connectivity of various systems to the wider
Internet has unintentionally turned them into appealing
targets for malicious cyberattacks [1]. For instance,the attack
known as BlackEnergy 3, which occurred in Ukraine in
2015, inflicted significant damage and disruption to the
country’s critical infrastructure. This attack targeted the
Ukrainian power grid network, resulting in widespread
power outages and affecting numerous regions. The attack
employed various tactics, including malware propagation
and remote access. Consequently, the demand for effective
security solutions has intensified, with industries recognizing
the indispensable nature of intrusion detection systems as

The associate editor coordinating the review of this manuscript and

approving it for publication was Sawyer Duane Campbell

a frontline defense mechanism [2]. Intrusion Detection
Systems (IDS) have emerged as a prominent research area,
garnering significant interest from academia and industry [3],
[4]. IDS encompass a range of devices, software applications,
or their combinations, designed to monitor network behaviors
[1], [5]. Their primary objective is to detect malicious
activities or policy violations by systematically collecting
and analyzing all available network data (network traffic,
system logs, etc.). It is essential to promptly report any
detected malicious activity to system administrators, enabling
appropriate remedial measures to be performed to mitigate
any potential harm. On the one hand, IDS can be divided
into two main types according to the detection method:
misuse-based and anomaly-based. Misuse-based methods
primarily rely on comparing the collected system information
with known signatures stored in a misuse pattern database.
This approach enables the effective identification of known
intrusions [6]. However, they perform poorly when dealing

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

VOLUME 12, 2024

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

172027

https://orcid.org/0000-0001-8554-3810
https://orcid.org/0000-0002-3973-2730

IEEE Access

A. Bouayad et al.: Lightweight Federated Learning for Efficient Network Intrusion Detection

with zero-day attacks (unknown attacks). Anomaly-based
techniques compare the real-time behavior of a system with
its defined normal behavior. When the deviation between
the current behavior and the normal behavior exceeds a
predefined threshold, an alert is triggered. These techniques
are capable of detecting zero-day attacks (unknown attacks).
On the other hand, IDS can be categorized into two categories
acording to the system structure conforming to various
data sources: network-based and host-based [6]. Network-
based IDS (NIDS) employs network sensors to capture
and analyze real-time network traffic data, utilizing data
analysis techniques to identify malicious communications.
Host-based IDS (HIDS) primarily focuses on monitoring
the data specific to a particular host (logs, processes, etc.),
enabling the identification of intrusion behaviors on the active
node. In this work, we focus mainly on NIDS using anomaly
detection techniques.

Modern networks are complex distributed systems com-
prising numerous components across multiple machines.
These components collaborate by communicating and coor-
dinating their actions to achieve synchronization and operate
as a unified system. It is imperative to incorporate a
fast, lightweight, and distributed machine learning (ML)
technique, leveraging the power of distributed computing
and ML algorithms, to detect intrusions with improved
efficiency and effectiveness. Federated Learning (FL) [7]
offers a distributed ML paradigm, allowing multiple enti-
ties or devices to collaboratively train a global model
without sharing their local data. FL leverages entities
or devices’ computation and storage capabilities and
exchanges only model parameters or updates with a central
server.

From a technical point of view, various approaches have
been proposed to tackle the problem of intrusion detection
using ML. Moreover, deep learning-based (DL) models
have been demonstrated to achieve superior performances
when compared to shallow learning techniques [3], [8],
[9], [10], [11], [12], [13]. However, these models are
known for their computational demands; they rely on
high-performance resources and extensive computing infras-
tructure. The training phase of deep learning models is
particularly energy-intensive due to several factors, such
as the complexity of the neural network model, and the
volume and size of datasets. Managing and optimizing energy
consumption when leveraging deep learning-based IDS
models (both in the training and inference phases) is crucial
to ensure efficient and sustainable operation in resource-
constrained environments. Consequently, pruning techniques
were introduced to eliminate redundant or insignificant parts
of a neural network, such as weights, connections, neurons,
or filters. Pruning can reduce the size, complexity, and energy
consumption of deep learning models without compromising
their performance [14], [15], [16], [17], [18].

In this paper, we introduce Lightweight-Fed-NIDS,
a framework for network intrusion detection based on FL.
It leverages the benefits of structured pruning and FL to

172028

achieve high detection performance and low computational
complexity. First, the NIDS global server computes a
data-free pruning mask without requiring any NIDS clients’
data. This technique is applied only once at the start of
training, making it a zero-shot pruning technique. Next,
the NIDS global server disseminates the global model
and pruning mask to NIDS clients, which then prune
and optimize their local models. Finally, the global server
constructs the final optimized global model by aggregating
the optimized local models collected from NIDS clients.
Our neural network models are based on CNN architectures,
namely ResNet-50 [19], ResNet-101 [19], and VGG-19
[20], enabling the extraction of valuable features from raw
traffic flows. To show the effectiveness of our technique,
we performed extensive experiments with three known
NIDS datasets, including CIC-IDS-2017 [21], UNSW-NB15
[22], and USTC-TFC2016 [23]. The obtained results show
that the combination of FL, structured pruning, and deep
learning-based detection techniques enables our method
to achieve both detection effectiveness and lightweight
computing efficiency.

To summarize, the main contributions of the paper are as
follows:

o We design a lightweight and fast-learning NIDS
machine-learning model architecture that can be trained
and deployed on edge devices with limited computing
capacity.

e We exploit a zero-shot pruning method that is
data-independent and reduces the model’s size and
complexity without compromising the detection
performance.

o We leverage the power of FL to enable collaborative
NIDS model training and updating among multiple
participants without sharing their private data.

« We assess the performance of our approach on various
benchmark NIDS datasets and demonstrate its efficiency
in terms of detection performance, training time com-
plexity, and inference time complexity.

The rest of the paper is organized as follows. Section II
reviews the related work on the topic. Section III introduces
our proposed method and explains how it addresses the
research problem. In Section IV, we evaluate our method
on different datasets; Finally, in Section V, we conclude the
paper and discuss some future works.

Il. RELATED WORK

Our work lies at the intersection of three main fields: NIDS,
FL, and deep learning pruning methods. In the following
paragraphs, we describe relevant works within FL for NIDS
and deep learning pruning techniques that are related to our
work.

A. FEDERATED LEARNING FOR NIDS
In their work, Zhao et al. [9] proposed a multi-task deep
neural network classifier in an FL system for network

VOLUME 12, 2024

A. Bouayad et al.: Lightweight Federated Learning for Efficient Network Intrusion Detection

IEEE Access

anomaly detection. The authors evaluated their method on
three datasets: CIC-IDS-2017 [21], ISCXVPN2016 [24],
and ISCXTor2016 [25]. They conducted two experiments
with different combinations of datasets. The first experiment
with CIC-IDS-2017 and ISCXVPN2016 achieved a detection
accuracy of 98.14%, while the second experiment using
CIC-IDS-2017 and ISCXTor2016 dropped to 97.81%.

For cyberattacks targeting industrial Cyber-Physical
Systems (CPSs), Li et al. [2] proposed a federated deep
learning approach called DeepFed. They developed a
CNN-GRU-based intrusion detection model and created a
framework for multiple industrial CPSs to collaborate on
model development. The anonymity of model parameters
is protected using a secure communication protocol based
on the Paillier cryptosystem. Performance evaluation on a
real-world dataset from a gas pipelining system demonstrates
that DeepFed achieved high accuracy, precision, recall, and
Fl-score, with all measures exceeding 97% for various
numbers of local agents.

A novel algorithm for Asynchronous Federated Learning
(AFL) is introduced by Agrawal et al. [26]. The algorithm
utilized a temporal weighted averaging approach, estimating
the number of clients expected in each round and continu-
ously updating the global model with a weighted average of
received parameters. This approach avoided deadlock issues
and increased server and client throughput. The algorithm is
evaluated on an IDS dataset called NSL-KDD, outperforming
traditional FL. models in terms of accuracy and performance.
The global model achieved approximately 99.5% accuracy
on the dataset, surpassing traditional FL. models in anomaly
detection. Additionally, the algorithm showed an increased
throughput of around 10.17% for every 30 timesteps in terms
of asynchronicity.

To defend against poisoning attacks on IoT networks,
Zhang et al. [27] developed a secure FL-based NIDS method
that employs two levels of defense mechanisms: model-level
and data-level. The former identifies and discards compro-
mised models, while the latter filters out malicious traffic
data. The authors evaluated their method on two datasets,
UNSW-NB15 and CICIDS2018, and reported significant
accuracy improvements compared to other methods: up to
48% and 36% respectively with the model-level defense,
and an additional 13% with the data-level defense on
CICIDS2018.

In the context of Industrial Internet of Things (IIoT)
systems, Huong et al. [3] proposed a cyberattack anomaly
detection system using a model architecture comprising a
VAE-Encoder, an LSTM unit, and a VAE-Decoder. They
employed the Kernel Quantile Estimator (KQE) to learn
an optimal threshold for high anomalous discrimination
accuracy. The proposed technique achieves a 97.9% F1-score
when evaluated on time series data obtained from a gas
pipeline factory SCADA system. Additionally, the approach
demonstrates a 35% reduction in bandwidth compared to
centralized learning architectures.

VOLUME 12, 2024

The authors in [28] incorporated attention mechanisms into
the FL model to create an intrusion detection mechanism.
They used a simple CNN architecture to accommodate
the constrained computational resources of the clients.
A weighted version of federated averaging is utilized,
with weights calculated based on the normalized distances
between the global and local models. The proposed model
achieves 99.65% accuracy in the centralized version of the
intrusion detection system and 99.12% accuracy and 88.97%
Fl-score in its federated version.

B. DEEP LEARNING PRUNING TECHNIQUES

To reduce latency, training time, and energy consumption
in Deep Neural Networks (DNNs), various approxima-
tion techniques have been developed, one of which is
software-based DNN pruning. Pruning involves selectively
removing connections, filters, and/or channels from the
network based on their importance. There are two main
types of pruning: structured (coarse-grained) [29], [30], [31]
and unstructured (fine-grained) [32], [33]. Structured pruning
involves removing entire groups of connections, filters,
or channels from the network, while unstructured pruning
removes individual connections or elements. By applying
pruning, the network becomes more compact and less
computationally intensive, leading to faster inference and
reduced energy consumption. However, it is essential in
real-world applications to carefully balance the trade-off
between model size reduction and drops in performance when
applying pruning techniques.

Su et al. [34] investigated the extent to which unstructured
pruning depends on the training dataset and the model
architecture. They evaluated the data dependency by applying
corrupted data in the pruning step and original data in
the retraining step. They also evaluated the architecture
dependency of the pruning technique by randomly permuting
all the connections of neurons layer-wise and thus obliterating
the structure obtained in the pruning step. The obtained
results reveal that the selected unstructured pruning technique
has no dependence on the training data and the architecture of
the model. Moreover, the authors improved the performance
of partially-trained tickets by proposing a new pruning
technique called hybrid tickets that combines both random
tickets and partially-trained tickets.

Tanaka et al. [35] introduced a pruning technique for neural
networks without any data by iteratively preserving synaptic
flow. The authors aimed to find a pruned model that can be
obtained at the initialization phase without training or seeing
the data. They introduced a conservation law that reveals
why existing gradient-based pruning methods encounter layer
collapse during the initialization step and how to prevent it.
They also proposed a new pruning method, called Iterative
Synaptic Flow Pruning (SynFlow), that maintains the total
flow of synaptic weights through the network during the
initialization step under a sparsity constraint. They tested
SynFlow with various models, datasets, and sparsity levels

172029

IEEE Access

A. Bouayad et al.: Lightweight Federated Learning for Efficient Network Intrusion Detection

and showed that it matched or exceeded existing state-of-the-
art pruning methods at the initialization phase.

Cai et al. [36] presented a structured pruning method for
CNNs at the initialization phase without using any data or
training. The authors strived to discover sparse subnetworks
that can achieve high performance and efficiency on various
datasets and architectures. PreCrop is the proposed technique
that directly reduces the model size at the channel level
according to the layerwise compression ratio. PreCrop is
regular and dense in storage and computation, unlike weight
pruning, and does not compromise accuracy. Furthermore,
since PreCrop prunes CNNs during the initialization phase,
the computational and memory costs of CNNs are lowered for
the training and inference on common hardware. They tested
their method on several modern CNN architectures, such as
ResNet [19], MobileNetV2 [37], and EfficientNet [38] with
two well-known datasets CIFAR-10 [39] and ImageNet [40].
They demonstrated that their method achieved higher accu-
racy than existing pruning at the initialization phase using the
same FLOPs and even improved the accuracy of some models
with fewer parameters.

Fang et al. [15] proposed a novel method for structural
pruning of deep neural networks, called DeepGraph, that
can handle any network architecture and pruning granularity.
The method is based on constructing a dependency graph
that captures the relationships between network components,
such as layers, channels, filters, or neurons. The dependency
graph then guides the pruning process, ensuring the pruned
network is valid and functional. The paper also introduces a
new metric, called structural sparsity ratio (SSR), to measure
the degree of structural pruning. The paper also demonstrated
the applicability of DeepGraph to other tasks, such as network
quantization and distillation.

Unlike previously discussed works, our network intrusion
detection method employs a zero-shot pruning technique with
FL. The pruning technique ensures data privacy since it is able
to select the most important connections without accessing
clients’ data. Therefore, our method combines the knowledge
of multiple local network intrusion detection learning models
into a single global model, ensuring reductions in both
training and inference times and resource optimization.

Ill. LIGHTWEIGHT-FED-NIDS FRAMEWORK
Lightweight-Fed-NIDS framework is composed of two
main components: 1) FL architecture for NIDS, and
2) a Lightweight and distributed method. In this section,
we describe the main elements of our framework. We should
notice that the parameters notation provided in Table 1 holds
in the remainder of the paper.

A. LIGHTWEIGHT-FED-NIDS ARCHITECTURE

Lightweight-Fed-NIDS is designed to preserve data privacy,
reduce computing resources, and build high-detection per-
formance. This system architecture is designed to accom-
modate heterogeneous hardware and software components,
which may share a common structure but possess distinct

172030

characteristics like storage size, processing power, and
memory capacity. In our Lightweight-Fed-NIDS framework,
the adoption of FL is fundamental to our approach for
several critical reasons. Firstly, FL enables us to leverage
distributed computational resources across multiple network
nodes, allowing for more robust and scalable intrusion
detection. More importantly, FL addresses a crucial challenge
in modern network security: the need for privacy-preserving
collaborative learning. In many network environments,
sharing raw network traffic data for centralized analysis poses
significant privacy and security risks. By employing FL, our
system allows multiple network entities to collaboratively
train a global intrusion detection model without exchanging
sensitive local data. This approach is particularly valuable in
scenarios where networks contain proprietary or confidential
information that cannot be shared directly. Additionally,
FL in our framework enables continuous model updating with
minimal communication overhead, as only model parameters
are shared instead of raw data. This is especially beneficial
in dynamic network environments where threat landscapes
evolve rapidly. Furthermore, the decentralized nature of FL
in our system enhances its resilience against single points
of failure and potential attacks on the central server. While
traditional centralized approaches have their merits, we argue
that the privacy-preserving, scalable, and adaptable nature
of FL in Lightweight-Fed-NIDS offers unique advantages
that are increasingly crucial in modern, distributed network
security paradigms. Our system comprises two main parts:
NIDS clients and NIDS global server as illustrated in Figure 1.

TABLE 1. FL architecture parameters notation and description.

Notation | Description

0o The initial model’s parameters.

0 The global model’s parameters.

0; The local model for the NIDS client j.

0r+1 The global model’s parameters for round ¢ + 1.

NIDS client j.

The set of the NIDS participants.

The number of participating NIDS clients in a single round.
The total number of communication rounds.

The pruning mask.

The size of the dataset of the NIDS client j.

The dataset of the NIDS client j.

The batch size.

The learning rate.

The loss function.

As)

B BOZ LN ZAS

1) NIDS CLIENTS
We consider that each client j is a NIDS that performs the
following pipeline:
1) Collecting local data D; from local network traffic via
sensors or devices (PLCs, RTUs, or SCADA systems),
2) Applying pruning techniques using the received mask
M and model weights 6,
3) Optimizing local model 6; with local data D; for
intrusion detection, and
4) Sending updated models to the NIDS global server.

VOLUME 12, 2024

A. Bouayad et al.: Lightweight Federated Learning for Efficient Network Intrusion Detection

IEEE Access

Global Update Local Models

Local Update

Model Aggregation

TEE

Global Model

NIDS Global Server

Local
Data

Local
Model

Local

Data Training

Training

Local
Model

Local

Data Training

NIDS Client 1

£D
":E ﬂ

ED
ni A
nonol

Industrial Company 2

Industrial Company 1

FIGURE 1. Lightweight-Fed-NIDS architecture.

2) NIDS GLOBAL SERVER
This component plays two primary roles: system initializa-
tion and model aggregation.

1) System initialization. The initialization step involves
setting the model weights 6y and the pruning mask
M and then disseminating them to the NIDS clients.
It is essential to emphasize that we strategically chose
to dispatch both the model and the mask to each
client for the following reasons: clients are unable
to effectively optimize the pruned model, as each
training phase necessitates access to both the model
and the pruning mask. This requirement emerges
from the structural modifications that the model
undergoes during the pruning process. Therefore, the
server undertakes the responsibility of determining
the pruning mask, thereby ensuring that essential
computations are managed on the server side. It is
pertinent to mention that we dispatch the mask only
once.

Model Aggregation. In the aggregation step, the
received updated and pruned clients’ models
{61,0,,...,0N} are aggregated using FedAVG! [7].
In general, the process of receiving and aggregating
clients’ models is repeated until a predefined criterion
is met. In our case, we define the number of communi-
cation rounds T as the stop criteria.

2)

B. LIGHTWEIGHT-FED-NIDS METHODS

In the following, we describe the main steps we apply to
build Lightweight and distributed ML models for NIDS.
Figure 2 outlines the applied workflow that connects these

1Ave:raging all the clients’ model weights.

VOLUME 12, 2024

NIDS Client 2

NIDS Client N

E>
nonl

Industrial Company N

steps, including initialization, local model optimization, and
model aggregation.

1) INITIALIZATION
The initialization step consists of two phases: model defini-
tion and pruning mask computation.

a: MODEL DEFINITION

To start with, assuming that a secure channel is established
between the NIDS global server and the NIDS clients,
we define the model architecture and initialize its parameters.
To address the vanishing and exploding gradient problems,
we apply the Kaiming He technique to initialize the model’s
weights [41]. The architecture is composed of two blocks,
including a feature extractor and a classifier. The feature
extractor applies multiple convolution layers to extract
relevant features from network flows. A convolution layer
is composed of four consecutive steps: 1) convolution
operation; 2) batch normalization; 3) ReLU activation
function; and 4) pooling. Given that we represent a network
flow as a 3-channel image (more details can be found in
subsection III-B2), the convolution operation is defined by
the following equation:

Yi’“,jl“,d

where:

- Yji+1 ji+1 g Tepresent a single spatial location’s compu-
tation within the convolutional layer / 4+ 1 at position
@**1, /1y and depth d in the (I 4+ 1)-th layer.

]
Yl il 4!

i, j* 4+ j) and depth d' in the I-th layer.

represents the input value at position (i +

172031

IEEE Access

A. Bouayad et al.: Lightweight Federated Learning for Efficient Network Intrusion Detection

Oy ®.

N,

CEAX XL
KSR

SYAvaS

—-C

Y

0 ()
TANTAN
V4

——Dissemination

Pruning Mask

Initialization Step

Data Collection and
Preprocessing

X

8% @ /¢
IR

Model Pruning and
Optimization

Optimized Local Model

Aggregation Step
A

~C

Preprocessing

NIDS Global Server

Data Collection and

TATRS

REORBRSH,
XA DRI
XX IRE RO
KSORRRELX
\\V/,‘\\!/)

&

Model Pruning and
Optimization

Optimized Local Model

FIGURE 2. The flowchart of Lightweight-Fed-NIDS methods.

as T as T Tam= ;
82 [192[13 102 =
Image Packets 10 | 0 |66 2
input ;
15 [133[9 = 193] L oooing LI
®

Con vs)lution
Batech Norm
RéLu

Convglutiun
Batch Norm

Output

Benign

Attack

Sfotamx activation function

Cnnvelu!ion
Batch Norm
4 +
Relu Relu

Features

Il [

Normalization

FIGURE 3. The main blocks of the model architecture of the NIDS Model.

- 0;jal 4 represents the convolutional kernel (or filter)
parameter connecting the input depth 4’ in the I-th layer
to depth d in the (I 4 1)-th layer.

- H and W are the height and width of the convolutional
kernel, respectively.

- K! represents the number of input depth channels in the
[-th layer.

Batch Normalization [42] addresses the internal covariate
shift challenge and is defined as follows:

X —up

BNX)=y O ——+8)
oB

where X is the input feature map to the convolutional layer.
up and op are the mean and standard deviation of X computed

172032

Features Extraction

Classification Probability distribution

along the batch dimension and the spatial dimensions. y and
B are learnable parameters that scale and shift the normalized
output. © denotes element-wise multiplication.

The ReLU activation function is described by equation (3):

ReLU (x) = max(0, x) 3)
The Max-Pooling function is described as follows:
MaXPOO]ing(X)i,j,k = %a’i(Xi~sx +m.j-sy+n.k “4)

where X is the input, (7, j) are the indices of the output, k is the
channel index, s, and sy are the stride values in the horizontal
and vertical directions, respectively, and the pooling window
is defined by the filter size f; and f, centered at the output
index (i, j).

VOLUME 12, 2024

A. Bouayad et al.: Lightweight Federated Learning for Efficient Network Intrusion Detection

IEEE Access

We use three well-known computer-vision models, namely,
ResNet-50 [19], ResNet-101 [19], and VGG-19 [20] as
feature extractors, allowing richer feature extraction from
network flow images. The feature vector is then fed into a
fully connected layer, followed by a softmax activation func-
tion (Equation (5)) to produce the final class probabilities.
Figure 3 depicts the full architecture of our neural network
model. Next, the NIDS global server defines the loss function
L (Equation (6)), and initializes the model’s parameters 6y =
{911 , 9(1)2, . 9(;”' } for the deep learning intrusion detection
model, the learning rate 7, the batch size B, and the total
number of communication rounds 7.

esi
PesrE

N
L==" yilog(p)+ (1 —y)log(l —pi) (6)

i=1

&)

where N is the number of samples, y; is the ground truth of
the i-th sample, and p; is the predicted probability for the i-th
sample.

b: PRUNING MASK COMPUTATION

Once the model’s weights are initialized, we employ the
zero-shot and structured pruning technique to calculate the
pruning mask. This mask is applied during the initialization
step and does not require training data, as demonstrated by
Cai et al. [36]. This approach eliminates the need to create the
mask through multiple iterations, saving time and resources.
We define the mask as a tensor M € T/ *2>xIL+1 guch that
the values of T € {0, 1}. Similarly to 6, we represent M as
a set of tensors {M", M2, ... M!L+1}. The intuitive idea
is that zero values of /\/l;i highlight the parameters of 6 that
should be pruned, while a one value means that the weight
is retained. Fang et al. [15] claimed that it is inefficient to
prune some parameters of a certain layer of a CNN model
without considering its dependencies on other layers in the
network. Therefore, we applied the inter-layer and intra-layer
dependencies criteria introduced in [15] to group layers. After
that, a score of each group is computed to identify and prune
unimportant parameters. The score is defined as follows:

ig,k :NIg,k/Z{TOpN (Ig)} (7)
where:
- g =1{61,62, ..., 0] represents the parameter group.

- 1(0) = ||0|| represents the L;-norm.

- Ik = Zoeg ||9[k]||% represents the importance of the

k-th prunable dimensions.

-1(g = deg 1(0): represents the group importance

score.

To compute the importance of each group of parameters,
we rely on the Li-norm, which measures the magnitude of
each parameter group. The importance score of each prunable
dimension is calculated and normalized to guide the pruning
process. Groups with lower importance scores are pruned

VOLUME 12, 2024

according to a predefined pruning rate, ensuring that the least
important parameters are eliminated while preserving those
that are crucial for model accuracy.

Then, using a predefined pruning rate, the mask is
generated, leading to a smaller and lighter model. The
resulting pruning mask is a binary tensor of the same size as
the model. The model is pruned by applying element-wise
matrix multiplication between the pruning mask and the
model’s weights. The next equation defines the new pruned
model’s weights 0

6'=M0o b (®)

It is worth mentioning that the zero-shot method offers
minimal practical advantages since it is commonly restricted
to simply setting weights to zero without eliminating the
pruned parameters. This means that the model size and
computational cost remain unchanged, and the benefits
of sparsity are not fully realized. Consequently, we have
incorporated the DeepGraph technique’to accelerate sparse
tensor multiplications and free up memory by remov-
ing zeroed parameters. Moreover, the pruning technique
is model-dependent and deterministic, indicating that the
outcome of pruning is inherently tailored to the specific
architecture of the model in question. Finally, the NIDS server
disseminates the initialized model, training parameters, and
the pruning mask to the participating NIDS clients.

2) MODEL OPTIMIZATION

NIDS clients are tasked with optimizing the pruned model
using their local data. Each NIDS client collects raw
network packets through sensors and processes them using
NFStream [43]. This tool constructs network flows by
grouping raw packets based on the 5 tuple fields: IP source,
IP destination, source port, destination port, and protocol.
Next, an NIDS client applies an internally developed
NFEStream plug-in to convert the collected flows into matrices
based on raw packet bytes. It considers only the first
300 bytes from each packet and limits the selection to the
first 40 packets [44]. The 300 bytes correspond to 20% of the
packet at the IP level (MTU=1500 in Ethernet Networks).
This approach differs from existing literature that typically
utilizes smaller data sizes; for example, Sun et al. [45]
used 40 bytes, while both Liu et al. [46] and Pham et al.
[47] employed a 30 bytes strategy. Our choice of a larger
input size is aimed at assessing the efficiency of pruning
techniques with more extensive data sizes and capturing
the most significant information from larger packets. This
input size can be further tuned (beyond the scope of the
paper). To standardize the lengths of flows, padding or
truncation is applied as necessary. Following this, the NIDS
client builds 3-channel images by replicating network flow
matrices three times. Finally, it normalizes the pixel values
of the generated images to a common range, enhancing
comparability and reducing bias in subsequent processing

2https ://github.com/VainF/Torch-Pruning

172033

IEEE Access

A. Bouayad et al.: Lightweight Federated Learning for Efficient Network Intrusion Detection

’ & Raw Packets

(O
é(-)
NFStream

Flow 1 Flow 2
40 packets 7 J255] 0 1 82 192[13 | .. [102
0 0 i 2

99 |12

7 125510 | .. 1 15 11331 9 | .. 93
300 bytes

Build 3-channel
image

25510 | .. 1 82 119213 | .. |102
120 [.. [53 10]0 . |2

: [
([~

H 7 125510 | .. 1 151133/ 9 | .. 193

FIGURE 4. Raw packets preprocessing step performed by each NIDS client.

and modeling. Figure 4 illustrates the data preprocessing step
carried out by NIDS clients.

In the next stage, the model is optimized using local
network traffic data to distinguish between normal flows and
intrusions. This optimization process involves refining the
local model over several epochs to achieve optimal accuracy
and performance. Algorithm 5 outlines the steps performed
by the NIDS client to optimize its local model, which includes
incorporating information from the global model, applying
the pruning mask computed at the initialization step, and
conducting gradient descent-based training. Lastly, the NIDS
client transmits the updated and pruned model to the NIDS
global server to build the Lightweight NIDS model.

Require: Global model € and the mask M
Ensure: Local model updated ¢

1: B < The set of batches

2: E < The number of epochs

3: n < The learning rate

4: Receive the global model 6 and pruning mask M from
the server
Apply the mask to the model to get the pruned model:
0—0oM
6: for epoch from 1 to E do
7: for each b € Bdo
8
9

wn

0+ 0—nVL(®O,D)
end for
0: end for

FIGURE 5. NIDS client model optimization.

3) MODEL AGGREGATION

During each communication round, the server aggregates
the parameters received from the NIDS clients using the
Federated Averaging (FedAVG) algorithm [7]. FedAVG
works by averaging the local model updates from the
participating clients. More formally, let 6] be the model
parameters of client i at round #. The global model update
Qéltll;al at round ¢ + 1 is calculated as follows:

N
1
+1
Hélobal = N z ,eit ©))
i=1

172034

This iterative process continues for a predefined number
of rounds T. After each round, the most recent updated
global model is distributed to all NIDS clients within the
network. These clients incorporate and replace their local
models with the received global model, ensuring that each
client benefits from the collective knowledge of the entire
network. This procedure enhances the intrusion detection
system’s capability by enabling the distributed clients to
collaboratively learn patterns from diverse data sources,
leading to a more generalized and robust anomaly detection
model. Furthermore, as the clients continually synchronize
their local models with the global model, the system becomes
better equipped to detect new and emerging threats.

Require: Clients C = {c1,c2,...,cn }
Ensure: Global model 6
1: N < The number of participating clients
2: T < The Number of rounds
3: The Server initializes the global model 8y and the mask
M.
4: The Server broadcasts the global model 6, and the mask
M to all clients.
: for round ¢ from 1 to T do
for j from 1 to N do
Receive 0, ; from Client c;
end for
Compute ;11 < %]N:l 0;; > Server aggregates
the received models from all clients.
10: Server broadcasts the updated model 6, to all
clients.
11: end for

R A

FIGURE 6. NIDS global server pipeline.

Finally, the aggregated global model is distributed to the
clients, who use it to replace their local models and continue
the training process. Algorithm 6 presents a thorough
description of the pipeline performed by the NIDS global
server.

IV. EXPERIMENTAL RESULTS

This section provides all the necessary information regard-
ing the conducted experiments, encompassing datasets,
experimental settings, and performance evaluation. These

VOLUME 12, 2024

A. Bouayad et al.: Lightweight Federated Learning for Efficient Network Intrusion Detection

IEEE Access

experiments aim to address three primary research questions,
namely:

1) RQ1: Can pruning be easily or conveniently applied to
centralized NIDS?

2) RQ2: Is it feasible to optimize a non-optimized and
zero-shot pruned NIDS model using FL in a distributed
environment?

3) RQ3: What is the impact of the pruning technique on
training and inference complexities?

A. DATASETS

We employ three distinct datasets to assess the Lightweight-
Fed-NIDS framework. These datasets are well-suited for
external communication networks and are widely utilized
within the NIDS community. We provide a description of
each dataset below.

Worms

Analysis

Backdoors

Shellcode

Dos

Attack

Generic

Reconnaissance

Fuzzers

Exploits

0 2000 4000 6000 8000 10000 12000 14000
No of attacks

FIGURE 7. Attacks type distribution in UNSW-NB15.

o UNSW-NBI1S [22] was collected in 2015 by the School
of Engineering and IT at UNSW Canberra at ADFA. The
authors used a small network simulation for 31 hours
to collect normal and malicious network packets. The
dataset has nine types of attacks: analysis, backdoors,
DoS, exploits, generic, fuzzers, reconnaissance, shell
code, and worms. It has more than two million records
with 49 features of different types and comes also in
pcap format. The data distribution of the dataset is shown
in Figure 7.

o USTC-TFC2016 [23], released in 2017, contains ten
kinds of malware traffic from public websites that were
captured from a real network environment between
2011 and 2015. The dataset also includes ten kinds of
normal traffic generated using IXIA BPS, a professional
network traffic simulation tool. The dataset is 3.71 GB
in size and is in the pcap format. Figure 8 shows the
dataset’s distribution.

o CIC-IDS-2017 dataset was created by the Canadian
Institute for Cybersecurity (CIC) [21] in a simulated
network setting. It consists of 5 days (July 3 to July 7,
2017) of network traffic with various common attack
types such as FTP patator, SSH patator, DoS slowloris,

VOLUME 12, 2024

Nsis-ay

Htbot

Tinba

shifu

Zeus

Attack

Miuref

Virut

Neris

Geodo

Cridex

0 5000 10000 15000 20000 25000 30000 35000 40000
No of attacks

FIGURE 8. Attacks type distribution in USTC-TFC2016.

DoS Slowhttptest, DoS Hulk, DoS GoldenEye, Heart-
bleed, Brute force, XSS, SQL Injection, Infiltration, Bot,
DDoS and Port Scan. Each attack type has 80 features
extracted by CICFlowMeter [24], [25]. The dataset also
contains full packet payloads in pcap format. Figure 9
shows the dataset’s distribution.

Web Attack - SQL Injection
Web Attack - XSS

Web Attack - Brute Force
Botnet

Dos Slowhttptest

DoS Slowloris.

Attack

SSH-Patator
FTP-Patator
Dos GoldenEye
Dos Hulk

DDoS

Infiltration - Portscan - Heartbleed

0 20000 40000 60000 80000 100000 120000 140000
No of attacks

FIGURE 9. Attacks type distribution in CIC-IDS-2017.

We evenly distributed the datasets previously described
among all participants during the experiments using the
Independent and Identically Distributed (IID) approach. This
approach divided normal and attack samples proportionally
among all participating NIDS clients. The goal was to
ensure that each participant received an equal number of
samples from each attack type as well as normal data. As a
result, we achieved a balanced and equitable distribution
of data across all participants, facilitating a representative
and accurate analysis. Figure 10 depicts each dataset’s
distribution of benign and attack samples.

B. EXPERIMENTAL SETTINGS

We implemented the Lightweight-Fed-NIDS framework in
Python 3.9.15 using the following libraries: NFStream,
Numpy, Pandas, PyTorch, and Torch-Pruning.®> We allocated
70% of the data for training and 30% for testing, with the

3 https://github.com/VainF/Torch-Pruning

172035

IEEE Access

A. Bouayad et al.: Lightweight Federated Learning for Efficient Network Intrusion Detection

1le6

1.0+ N Normal Data

EEm Attack Data

0.8

0.6 4

Counts

0.4

0.2 4

0.0 -

UNSW-NB15

CIC-IDS-2017
Datasets

USTC-TF2016

FIGURE 10. Normal and attack data distributions in UNSW-NB15,
CIC-1DS-2017, and USTC-TF2016 datasets.

testing set reserved for final evaluation. The training set was
further randomly divided into an 80% training set and a 20%
validation set. The hyperparameters employed for training the
local NIDS model consisted of ten epochs and a learning rate
of 2 x 107,

In the federated learning phase, we set the communication
rounds value T to 5, as the model ceased to evolve beyond
this round. We then assessed the performance of our method
with 10, 50, and 100 participants. Notably, at the aggregation
step, we only select 50% of the participating NIDS clients
to perform the aggregation. In the model pruning process,
we have tried different sparsity levels, including 50%,
70%, and 90%. We use convenient metrics to evaluate the
performance of our methods, including:

o Training Accelerating (TA),

o Inference Acceleration (IA),

e AAcc: the accuracy difference between pruned and
unpruned model,

e A Fl-sc: Fl-score difference between pruned and
unpruned model,

o Fl-score and accuracy.

It is important to note that our study’s training and
inference time measurement is conducted at the client level.
Specifically, we calculate these times at the end of each
communication round by measuring how long each client
takes to complete its portion of the training and inference
processes. To provide a comprehensive view of the system’s
performance, we then calculate the average of these times
across all clients participating in the FL process. Our
methodology includes all communication rounds in the FL
cycle. This means that the training and inference times
reported are not limited to a single communication period
(T), but rather encompass the entire series of interactions
between the server and clients throughout the learning
process.

Finally, our experiments were conducted on a single node
within the African Super-Computing Center HPC cluster

172036

equipped with four A100 SXM4 80 GB GPUs from NVIDIA
and supported by Mohammed VI Polytechnic University.

C. PERFORMANCE EVALUATION

1) RESEARCH QUESTION 1

To address the first research question RQ1, we simulated a
scenario in which all data were centralized. We conducted a
series of experiments to compare the unpruned NIDS models
(baseline) with the pruned NIDS models. Tables 2, 3, and 4
present the results of the centralized settings for each dataset,
respectively. Our findings indicate that pruning does not
compromise the performance of the models; on the contrary,
some pruned models achieve slightly better results than their
non-pruned counterparts. For instance, in Table 2, we can
observe improvements in accuracy and Fl-score compared
to the baseline (unpruned model). When using ResNet-50
as a feature extractor with 70% pruning rate, the model
achieved 99% accuracy and F1-score, representing a 0.01%
improvement in performance. In most cases, we found that
the model did incur degradation, meaning that it either
maintained or improved its performance. However, in a few
cases, we observed a slight degradation of 10™# in accuracy.
Therefore, pruning benefits the model by maintaining or
increasing detection performance with no added overhead.
These same conclusions apply to Tables 3 and 4, indicating
that pruning is efficiently applied to centralized NIDS.

2) RESEARCH QUESTION 2

The next research question RQ2 is related to the impact
of the pruning technique on NIDS performance in fed-
erated learning settings. The results are presented in
Tables 5, 6, and 7. Our Lightweight-Fed-NIDS framework
with a pruning technique demonstrates the ability to achieve
high accuracy and Fl-score on all three datasets, especially
on the USTC-TFC2016 dataset, where the accuracy and
Fl-score are above 0.99% in most cases. The results also
show that the pruning technique can significantly reduce the
training and inference time. For instance, using VGG-19 as a
feature extractor, we achieve up to 3.5X speedup in training
time and 2.5X speedup in inference time across all datasets
while maintaining comparable detection performance in most
cases. The optimal sparsity level depends on the feature
extractor and the dataset. For instance, in the case of
the CIC-IDS-2017 dataset both ResNet-50 and ResNet-101
(Table 5) achieve the best performance with 70% sparsity,
exhibiting an increase in model accuracy by 3 x 1074
In contrast, VGG-19 achieves the best performance with 50%
sparsity in accuracy and F1-score. It is worth mentioning that
different feature extractors have different characteristics and
suitability for different datasets. For example, on the UNSW-
NB15 (Table 6) dataset, VGG-19 outperforms ResNet-50
and ResNet-101 in terms of accuracy and Fl-score, while
on the USTC-TFC2016 dataset (Table 7), ResNet-50 and
ResNet-101 outperform VGG-19 in terms of accuracy
and Fl-score. Therefore, choosing an appropriate feature

VOLUME 12, 2024

A. Bouayad et al.: Lightweight Federated Learning for Efficient Network Intrusion Detection

IEEE Access

TABLE 2. Centralised result for CIC-IDS-2017.

Feature extractor Sparsity accuracy Fl-score Training Time Inference Time TA 1A A Acc A Fl-sc
0 0.9993 0.9993 2147.88 495.74
ResNet-50 50 0.9994 0.9995 1149.37 365.97 x 1.87 x 135 +40.0001 + 0.0002
70 0.9994 0.9994 1128.95 33791 x 1.9 x 1.47 4+ 0.0001 + 0.0001
90 0.9989 0.9987 694.11 272.2 x3.09 x 1.8 —0.0004 — 0.0006
0 0.9985 0.9989 3393.54 733.1
ResNet-101 50 0.9996 0.9993 1801.36 524.18 x 1.88 x 1.4 +0.0004 + 0.0004
esiet 70 09991 0.9992 1710.12 476.83 x 198 x1.54 400006 -+ 0.0003
90 0.999 0.9983 1085.96 386.65 x 3.12 x 1.9 +0.0005 — 0.0006
0 0.9993 0.9994 1104.04 369.46
VGG-19 50 0.9997 0.9994 580.65 276.76 x 1.9 x 1.33 4 0.0004 0
70 0.9994 0.9994 571.9 267.78 x 193 x 138 4 0.0001 0
90 0.9989 0.9988 440.41 199.1 x 251 x 1.8 —0.0004 — 0.0006
TABLE 3. Centralised result for UNSW-NB15.
Feature extractor Sparsity ~ Accuracy Fl-score Training Time Inference Time TA 1A A Acc A Fl-sc
0 0.9731 0.9533 402.55 104.12
ResNet-50 50 0.973 0.9536 195.83 64.28 x206 x 162 +0.0001 —0.0003
70 0.9557 0.9499 206.44 65.24 x 1.95 x 1.6 +0.0174 4 0.0034
90 0.9712 0.9461 95.85 38.89 X 4.2 x 2.68 +0.0019 + 0.0072
0 0.9591 0.9496 736.31 151.21
ResNet-101 50 0.9775 0.9535 372.07 105.37 x 198 x 144 —0.0039 —0.0039
esivet- 70 0.9779 0.9503 363.32 91.6 X203 x165 —00188 —0.0007
90 0.9692 0.9437 213.25 67.92 x 345 x223 —0.0101 4 0.0059
0 0.9649 0.9494 1212.22 240.17
VGG-19 50 0.9783 0.953 600.59 162.97 x 202 x 147 —0.0134 —0.0036
70 0.9788 0.9479 580.4 141.81 x209 x1.69 —0.0139 +0.0015
90 0.9765 0.9459 351.14 112.53 x 345 x213 —0.0116 4+ 0.0035
TABLE 4. Centralised result for USTC-TFC2016.
Feature Extractor Sparsity ~ Accuracy Fl-score Training Time Inference Time TA 1A A Acc A Fl-sc
0 0.9999 0.9999 612.62 125.77
ResNet-50 50 1 1 306.93 86.36 X 2 x 1.46 —0.0001 — 0.0001
70 1 1 297.86 75.44 X206 x1.67 —0.0001 — 0.0001
90 0.9998 0.9998 213.49 82.17 x 287 x 153 40.0001 -+ 0.0001
0 0.9997 0.9996 1004.92 198.54
ResNet-101 50 0.9996 0.9996 508.32 136.35 x 198 x 146 + 0.0001 0
eset 70 0.6932 0.6838 4853 118.76 x207 x1.67 +03065 +0.3158
90 0.994 0.9946 285.82 92.29 x 352 x215 +0.0057 + 0.005
0 1 1 341.75 108.61
VGG-19 50 1 1 168.54 65.34 x 203 x 1.66 0 0
70 0.9996 0.9996 178.42 67.54 x 192 x1.61 +40.0004 + 0.0004
90 0.9965 0.9963 102.85 45.01 x 3.32 x 241 4 0.0035 + 0.0037

extractor is important for achieving good performance in
federated learning settings.

To further investigate the impact of the pruning technique
on the FL performance, we conducted a comparative analysis
of the convergence of the model based on the VGG-19
feature extractor with and without pruning on three datasets
using multiple sparsity levels. Figures 11, 12, and 13 depict
the convergence of the VGG-19 feature extractor model
with all datasets, including CIC-IDS-2017, UNSW-NB135,
and USTC-TFC2016. These graphs show how the sparsity
level influences the model’s behavior during the training

VOLUME 12, 2024

rounds. We can see that increasing the sparsity level causes
some fluctuations in the model’s performance in the first
rounds. However, as training progresses, the model adapts
and becomes more stable, eventually converging in the final
round. For a detailed evaluation of the convergence of models
using ResNet-50 and ResNet-100 feature extractors, please
refer to Appendix.

Our proposed approach achieves performance that closely
aligns with the centralized approach across different datasets.
This underscores the trustworthiness and practicality of the
Lightweight-Fed-NIDS framework. These findings highlight

172037

IEEE Access

A. Bouayad et al.: Lightweight Federated Learning for Efficient Network Intrusion Detection

TABLE 5. Performance of our FL approach on the CIC-IDS-2017 dataset with 10 users.

Feature Extractor Sparsity Accuracy Fl-score Training Time (s) Inference Time (s) TA 1A A Acc A Fl-sc
0 0.9991 0.9985 216.7915 23.4688
ResNet-50 50 0.9992 0.9987 115.4494 17.2402 x 1.88 x 136 4 0.0001 4 0.0002
70 0.9994 0.9992 112.0796 15.5866 x 193 x 151 +40.0003 4 0.0007
90 0.9982 0.9976 68.9205 13.0768 x3.15 x 179 —0.0009 — 0.0009
0 0.9982 0.9976 335.0506 32.7349
ResNet-101 50 0.9993 0.9991 177.5997 24.6819 x 1.89 x 133 40.0015 4 0.0015
70 0.9994 0.9993 165.1246 20.894 x 203 x 157 40.0012 4 0.0017
90 0.9976 0.9971 96.1629 15.3922 x 348 x213 —0.0006 — 0.0005
0 0.9994 0.9989 111.1094 17.1264
VGG-19 50 0.9995 0.9993 56.0593 12.4499 x 198 x 138 +40.0001 4+ 0.0004
: 70 0.9993 0.9991 56.7763 11.491 x 196 x 149 —0.0001 + 0.0002
90 0.9973 0.995 30.6895 6.0139 x3.62 x285 —0.0021 —0.0039
TABLE 6. Performance of our FL approach on the UNSW-NB15 dataset with 10 users.
Feature Extractor Sparsity ~ Accuracy Fl-score Training Time (s) Inference Time (s) TA 1A A Acc A Fl-sc
0 0.9864 0.947 85.9364 8.5626
ResNet-50 50 0.946 0.944 49.9638 5.9962 x 172 x 143 —0.0404 —0.003
) 70 0.956 0.947 49.0995 5.6498 x 175 x 152 —0.0304 0
90 0.967 0.9469 27.4747 2.5401 x 3.13 x 337 —0.0194 —0.0001
0 0.9546 0.9462 125.3833 12.8802
ResNet-101 50 0.9602 0.9475 76.0897 9.1991 x 1.65 x 1.4 +0.0013 4 0.0013
70 0.9578 0.9456 75917 9.2613 x 1.65 x139 +40.0032 — 0.0006
90 0.9657 0.9467 51.0107 7.0727 x246 x 182 +0.0111 + 0.0005
0 0.9451 0.9474 41.2214 5.683
VGG-19 50 0.9498 0.9483 20.9921 3.8341 x 196 x 148 +0.0047 + 0.0009
70 0.9526 0.9476 222571 4.1218 x 185 x 138 +0.0075 4 0.0002
90 0.9707 0.9446 12.1112 2.4126 x 3.4 X236 +0.0256 — 0.0028
TABLE 7. Performance of our FL approach on the USTC-TFC2016 dataset with 10 users.
Feature Extractor Sparsity Accuracy Fl-score Training Time (s) Inference Timev(S) TA 1A A Acc A Fl-sc
0 0.9558 0.9605 68.5705 6.4813
ResNet-50 50 0.9997 0.9997 40.4729 4.4137 x 1.69 x 147 +40.0439 4 0.0392
70 0.9997 0.9997 39.1443 4.1828 x 175 x 155 +40.0439 +0.0392
90 0.9996 0.9996 21.0202 1.7252 x 326 x376 +0.0438 +0.0391
0 0.9997 0.9997 117.8598 10.6631
ResNet-101 50 0.9995 0.9995 60.5672 6.6555 x 1.95 x 16 —0.0002 —0.0002
T 70 0.9996 0.9997 60.3139 6.579 x 195 x1.62 —0.0001 0
90 0.9991 0.9992 40.8388 5.2115 x2.89 x205 —0.0006 —0.0005
0 0.9998 0.9998 33.1345 4.4547
VGG-19 50 0.9995 0.9996 16.7902 2.9346 x 197 x 152 —0.0003 — 0.0002
70 0.9994 0.9995 17.8359 3.2198 x 1.86 x 138 —0.0004 — 0.0003
90 0.9962 0.9965 9.3135 1.7447 x 356 x255 —0.0036 —0.0033

the importance and feasibility of our framework in real-
world scenarios, especially in distributed environments where
multiple factories are managed under a unified organizational
structure.

3) RESEARCH QUESTION 3

The last research question RQ3 sheds light on the impact
of the pruning technique on the training and inference
complexities in both centralized and distributed settings.
Our proposal is tailored to run on NIDS-client with limited
resources. Consequently, we simulate two more complex

172038

scenarios where the numbers of NIDS clients are 50 and
100. We measured the training and inference times to see
how pruning affected the computing performance. Table 8
presents the obtained results with all datasets when the
model incorporates the ResNet-50 as a feature extractor.
It is obvious that increasing the sparsity level for all feature
extractors reduces the training time and inference time,
meaning that pruning speeds up the model’s training and
inference complexities. However, the model’s performance
drops in the case of UNSW-NB15 with a 90% sparsity level.
This can be due to the fact of the small and imbalanced

VOLUME 12, 2024

A. Bouayad et al.: Lightweight Federated Learning for Efficient Network Intrusion Detection

IEEE Access

TABLE 8. Performance of Our FL Approach using ResNet-50 model with 50 Users.

Dataset Sparsity Accuracy Fl-score Training Time (s) Inference Time (s) TA 1A A Acc A Fl-sc
0 0.966 0.9427 15.9736 1.8568
50 0.9664 0.9443 8.4761 1.4129 x 1.88 x 131 40.0004 4 0.0016
UNSW-NBIS 70 09813 0.9387 8.1669 1.306 X196 x 142 +00153 —0.004
90 0.5 0.474 4.8027 1.0287 x 3.33 x 1.8 — 0466 —0.4687
0 0.9964 0.9967 12.8327 1.3319
50 0.9962 0.9964 6.3505 0.8896 x 2.02 x 15 —0.0003 —0.0003
USTC-TFC2016 70 0.982 0.9806 6.3083 0.8873 % 2.03 x 1.5 —0.0144 —0.0161
90 0.933 0.9344 3.5337 0.5707 X363 x233 —0.0634 —0.0623
0 0.9974 0.9969 42.7476 4.5878
CIC-IDS-2017 50 0.9977 0.9974 21.4627 3.0425 x 199 x1.51 +0.0003 + 0.0005
70 0.9961 0.9962 23.3673 3.3751 x 183 x 136 —0.0013 —0.0007
90 0.9869 0.981 15.3541 2.898 x 278 x 158 —0.0105 —0.0159
TABLE 9. Performance of our approach on CIC-IDS-2017 dataset using VGG-19 model and 100 users.
Sparsity Accuracy Fl-score Training Time (s) Inference Time (s) TA 1A A Acc A Fl-sc
0 0.9952 0.9931 21.201 2.2541
50 0.9958 0.9938 11.0328 1.6421 x 192 x 137 +0.0006 + 0.0007
70 0.9898 0.9888 11.5533 1.651 x 1.84 %137 —0.0054 —0.0043
90 0.9711 0.9649 7.4548 1.4296 x 284 x158 —0.0241 —0.0282
TABLE 10. Performance of our approach on USTC-TFC2016 dataset using ResNet-50 model and 100 users.
Sparsity Accuracy Fl-score Training Time (s) Inference Time (s) TA 1A A Acc A Fl-sc
0 0.9652 0.9628 6.585 0.8216
50 0.9693 0.9719 3.5199 0.6683 x 1.8707 % 1.2293 4 0.0041 4+ 0.0091
70 0.9392 0.9353 3.1421 0.5645 % 2.095 x 14554 —0.026 —0.0275
90 0.5 0.3614 1.8498 0.4959 x 3.5598 x 1.6567 — 04652 —0.6014
1.000 T
0.995 1
0.9
0.990 -
0.985 - 0.8 1
z z
£ 0.980 - -
% %074

0.975 4

0.970 4

—a— Original

—8— 50% Sparsity
70% Sparsity

—8— 90% Sparsity

0.965 -

0.960 1

T T T
1.0 15 2.0 2.5 3.0 35 4.0 4.5 5.0
Rounds

FIGURE 11. Convergence of the VGG-19 model in FL system with
5 rounds, and using the CIC-IDS-2017 dataset.

number of samples in the dataset, as shown in Figure 10.
This explanation is substantiated by the results obtained from
CIC-IDS-2017, which contains more than twice the number
of samples compared to UNSW-NB15.

Next, we measure the impact of our FL. model with
100 NIDS clients by alternating the feature extractors and

VOLUME 12, 2024

0.6

—8— Original
—8— 50% Sparsity
70% Sparsity

0.5 —8— 90% Sparsity

T T
1.0 15 2.0 Z5, 3.0 35 4.0 4.5 5.0
Rounds

FIGURE 12. Convergence of the VGG-19 model in FL system with
5 rounds, and using the UNSW-NB15 dataset.

datasets. Table 9 displays the obtained results with the
CIC-IDS-2017 dataset and the VGG-19 feature extrac-
tor. Likewise, Table 10 summarizes the findings of our
experiments with USTC-TFC2016 and ResNet-50 feature
extractor. It is worth highlighting that we used ResNet-50
and VGG-19 in this evaluation to test the impact of pruning

172039

IEEE Access

A. Bouayad et al.: Lightweight Federated Learning for Efficient Network Intrusion Detection

1.0+ C

0.9 4

—a— Original
—8— 50% Sparsity

70% Sparsity
—8— 90% Sparsity

0.6 4

T T
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Rounds

FIGURE 13. Convergence of the VGG-19 model in FL system with
5 rounds, and using the USTC-TFC2016 dataset.

on training and inference complexities while preserving the
detection performance. Moreover, we proved the resilience
of our approach using three datasets, namely CIC-IDS-2017,
USTC-TFC2016, and UNSW-NB15, and three feature
extractors, including ResNet50, ReNet-101, and VGG-19.
In all cases, we demonstrated the efficiency of our framework
in terms of detection performance and computation complex-
ity optimization. As shown previously, there is an evident
improvement in training and inference time complexities
without dropping the performance even if we alter both
the feature extractor and dataset. In addition, the successful
implementation of our FL-based methodology across various
participant sizes further supports the scalability, reliability,
and applicability of our approach, highlighting its potential
for deployment in real-world settings involving distributed
environments where a large number of participants may
be involved. It’s worth mentioning that the results remain
consistent regardless of variations in the number of clients,
the feature extractor used, or the dataset employed.

Based on these results, our FL approach demonstrates the
ability to efficiently prune neural networks without com-
promising performance. However, it’s essential to fine-tune
the feature extractor and sparsity level according to user
preferences for a balance between speed and accuracy. The
speedup achieved depends on various factors, including
the chosen feature extractor, sparsity level, and dataset.
Additionally, increasing the sparsity level can lead to
improved training and inference times but may also result in
a slight degradation of accuracy and F1-score. For example,
if the user prioritizes both speed and accuracy, the model
with a ResNet-101 feature extractor and a 70% sparsity level
stands out with the highest Fl-score (0.9993) among all
models, and it also exhibits significant speed improvements
in terms of training and inference (TA: x 2.03, [A: x 1.57).
On the other hand, in scenarios where speed (inference time)
takes precedence, the user might opt for a model featuring a
VGG-19 extractor with a 90% sparsity level. This particular

172040

model achieves the highest TA (x 3.62) and TA (x 2.85)
compared to all other models. However, it does come with a
slightly lower accuracy (0.9973) and F1-score (0.995) when
compared to alternative models.

To enhance our evaluation, we conducted additional exper-
iments using the FedProx algorithm [48] on UNSW-NB15,
USTC-TFC2016, and CIC-IDS-2017 datasets, employing the
ResNet-50 architecture across configurations of 10 clients at
various sparsity levels (0%, 50%, 70%, 90%). The results,
presented in Table 11, reveal the performance of FedProx
algorithm. Our findings consistently indicate that FedAvg
(Table 6) either surpasses or matches the performance of
FedProx in terms of accuracy and training time across
all tested sparsity levels using 10 clients. This empirical
evidence supports the effectiveness of FedAvg over more
complex aggregation methods for our specific application,
highlighting its suitability in scenarios requiring efficient and
accurate federated learning.

It is noteworthy to state that the pruned models resulting
from our approach contain a significant proportion of
zero-valued parameters. This characteristic allows for more
efficient compression and storage compared to dense models.
Additionally, they can significantly reduce memory con-
sumption by utilizing a sparse storage format that compresses
repeated zeros, storing only the non-zero values and their
corresponding locations [49], [50], [S1]. This efficiency
is particularly advantageous for IDS devices with limited
memory capacity. While we did not directly conduct exper-
iments on lower-end hardware, our methodology leverages
a combination of model size reduction and computational
complexity analysis to simulate and predict the impact on
such devices. Firstly, the primary effect of pruning is to
reduce the size of the model, which directly translates to
lower memory requirements. By shrinking the model size,
we inherently make the model more suitable for devices
with limited RAM and storage capacity. This size reduction
allows for faster loading times and less strain on the
device’s storage, which is a critical factor for limited-resource
clients. Secondly, the reduction in the number of parameters
and operations (FLOPs) as a result of pruning leads to a
decrease in computational complexity. This directly impacts
the CPU/GPU utilization during inference, leading to less
power consumption and faster inference times, which are
critical metrics for performance on limited-resource devices.
By quantifying the reduction in computational complexity,
we can simulate the expected improvements in inference
speed and energy efficiency on such hardware. Moreover,
the pruned models can help reduce the required bandwidth
for transmitting model parameters over the network, which
is advantageous in scenarios with limited or costly network
connectivity.

Our Lightweight-Fed-NIDS approach demonstrates supe-
rior performance and efficiency compared to other state-
of-the-art techniques in network intrusion detection.
As shown in Table 12, our method achieves the highest
Fl-score (99.88%) and accuracy (99.89%) across multiple

VOLUME 12, 2024

A. Bouayad et al.: Lightweight Federated Learning for Efficient Network Intrusion Detection

IEEE Access

TABLE 11. Performance of our approach using FedProx averaging algorithm on UNSW-NB15, USTC-TFC2016, and CIC-IDS-2017 datasets.

Dataset Sparsity Accuracy Fl-score Tarining Time (s) Inference Time (s) TA 1A A Acc A Fl-sc
0 0.9439 0.8723 248.317 25.0086
UNSW-NBI5 50 0.9314 0.8783 156.684 16.3397 x 1.5848 x 1.5305 —0.01255 4+ 0.0060
70 0.9273 0.8883 181.495 22.5792 x 1.3681 x 1.1075 —0.01660 4+ 0.0159
90 0.9162 0.8891 137.355 18.1696 x 1.8078 x 1.3763 —0.02768 4+ 0.0168
0 0.9991 0.9992 65.9461 6.3971
USTC-TEC2016 50 0.9995 0.9995 41.2368 4.3263 x 1.5992 x 1.4787 + 0.0004 + 0.0004
70 0.9994 0.9994 41.2042 4.1626 x 1.6005 x 1.5368 + 0.0003 + 0.0002
90 0.9992 0.9993 30.0616 3.4685 x 2.1937 x 1.8444 + 0.0001 + 0.0001
0 0.9960 0.9947 218.2783 21.8958
CIC-IDS-2017 50 0.9960 0.9962 137.4222 14.6776 x 1.5884 x 1.4918 0 + 0.0015
B) 70 0.9969 0.9952 137.2102 13.7927 x 1.5908 x 1.5875 + 0.0009 + 0.0006
90 0.9969 0.9965 124.6203 17.8151 x 1.7515 x 1.2291 + 0.0009 + 0.0019
TABLE 12. Comparative analysis of our approach.
Method Dataset Fl-score Accuracy (%) Key Features
MT-DNN-FL [9] CIC-IDS-2017 - 98.14 - 1.7x faster than the centralized
ISCXVPN2016 approach
- Multi-Task Learning
AFL [26] NSL-KDD - 99.5 - Increased throughput
- Partially Asynchronous com-
munication
FedACNN [28] NSL-KDD 88.97 99.12 Reduction of communication
rounds
Our Method UNSW-NB15 99.88 % 99.89% - data-free pruning technique
USTC-TFC2016 - High detection performance
CIC-IDS-2017 - 3X faster in training and in-
ference
- Reduced the computational
resource
TABLE 13. Top obtained results across experiments using 10 clients.
Dataset Unpruned Pruned
Feature Fl-score Training time Inference Feature Fl-score Training Time Inference Sparsity
extractor time extractor time
CIC-IDS VGG-19 0.9989 111.1094 17.1264 VGG-19 0.9993 56.0593 12.4499 50%
UNSW ResNet-50 0.947 85.9364 8.5626 VGG-19 0.9483 20.9921 3.8341 50%
USTC VGG-19 0.9998 33.1345 4.4547 ResNet-50 0.9997 39.1443 4.1828 70%

datasets, including UNSW-NB15, USTC-TFC2016, and
CIC-IDS-2017. This performance surpasses that of MT-
DNN-FL [9], which reported 98.14% accuracy on CIC-IDS-
2017, and AFL [26], which achieved 99.5% accuracy on
the NSL-KDD dataset. Furthermore, our approach offers
unique advantages through its data-free pruning technique,
which contributes to a 3X speedup in both training and
inference times, outperforming MT-DNN-FL’s 1.7x speedup.
While FedACNN [28] focuses on reducing communication
rounds, our method addresses both computational efficiency
and model performance. Notably, our approach is the
only one among those compared that explicitly reduces
computational resource requirements while maintaining high
detection performance across a diverse range of datasets.
This combination of high accuracy, computational efficiency,
and resource optimization positions our Lightweight-Fed-
NIDS as a robust and versatile solution for modern network
intrusion detection challenges.

VOLUME 12, 2024

V. CONCLUSION AND FUTURE WORK
This paper presents a novel framework designed for NIDS.
Lightweight-Fed-NIDS harnesses the advantages of feder-
ated learning and structured model pruning. It facilitates
distributed learning across various local domains, updates all
local models globally, and employs pruning techniques to
decrease model size and complexity. The key advantage of
our framework is the use of a non-iterative, structured, and
data-free pruning technique called zero-shot pruning. This
technique generates a pruning mask without using any data
and applies it only once at the beginning of training.
Lightweight-Fed-NDIS achieves high detection perfor-
mance in both centralized and FL settings with three
well-known NIDS datasets, namely UNSW-NB2015 [22],
USTC-TFC2016 Wang et al. [23] and CICIDS-2017 [21].
For example, the model built with the ResNet-50 feature
extractor and 70% pruning rate scored 99% accuracy and
Fl-score in both centralized and distributed cases with

172041

lE E E ACC@SS A. Bouayad et al.: Lightweight Federated Learning for Efficient Network Intrusion Detection

0.9 1
0.8
>
[
g
g
£ 0.7
0.6 —a— Original
—8— 50% Sparsity
70% Sparsity
0.5 —8— 90% Sparsity
T T T T T T T T T
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Rounds

FIGURE 14. Convergence of the ResNet-50 model in FL system with
5 rounds, and using UNSW-NB15.

1.00 A
0.95 A
0.90
>
[
® 0.85
g
2
0.80 -
0.75 + —e— Original
—8— 50% Sparsity
0.70 4 70% Sparsity
—8— 90% Sparsity

T T
1.0 15 2.0 25 3.0 35 4.0 45 5.0
Rounds

FIGURE 15. Convergence of the ResNet-50 model in FL system with
5 rounds using USTC-TFC2016.

1.00

/’/

0.98 -

0.92
—a— Original
0.90 4 —8— 50% Sparsity
70% Sparsity

—8— 90% Sparsity

T T
1.0 15 2.0 25 3.0 35 4.0 45 5.0
Rounds

FIGURE 16. Convergence of the ResNet-50 model in FL system with
5 rounds using CIC-IDS-2017.

the CIC-IDS-2017 dataset. This resulted in improving
the training and inference time by up to 3X faster and

172042

2 * —
—v
0.9 1
0.8
>
[
g
g
£ 0.7
0.6 —a— Original
—8— 50% Sparsity
70% Sparsity
0.5 —8— 90% Sparsity
T T T T T T T T T
1.0 15 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Rounds

FIGURE 17. Convergence of the ResNet-101 model in FL system with
5 rounds using UNSW-NB15.

1.04 & g
0.9 4
> 0.8 4
[
2
g
S
0.7
0.6 1 —8— Original
—8— 50% Sparsity
70% Sparsity
—8— 90% Sparsity
0.5 T T T T T T T T T
1.0 15 2.0 Z5, 3.0 35 4.0 4.5 5.0
Rounds

FIGURE 18. Convergence of the ResNet-101 model in FL system with
5 rounds using USTC-TFC2016.

1.00 4 - "
0.98 -
0.96
>
[
g
2 0.94 4
ks
0.92
—a— Original
0.90 —8— 50% Sparsity
70% Sparsity
—8— 90% Sparsity

T T
1.0 1.5 2.0 2.5 3.0 3.5 4.0 45 5.0
Rounds

FIGURE 19. Convergence of the ResNet-101 model in FL system with
5 rounds using CICIDS2017.

reducing the computational resource consumption compared
to the unpruned model (baseline). This makes our system

VOLUME 12, 2024

A. Bouayad et al.: Lightweight Federated Learning for Efficient Network Intrusion Detection

IEEE Access

1.0 4 / A
0.9 /
0.8
>
[
g
g
2 0.7
0.6 4 —a— Original
—8— 50% Sparsity
70% Sparsity
0.5 —8— 90% Sparsity
T T T T T T T T T
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Rounds

FIGURE 20. Convergence of the ResNet-50 model in FL system with
5 rounds using CIC-IDS-2017 and involving 50 users.

1.04 —
/,’/'7
o5 /
n /
>
[0
g
5
o
< 0.7
0.6 1 —a— Original
—8— 50% Sparsity
70% Sparsity
0.5 1 —8— 90% Sparsity
T T T T T T T T T
1.0 15 2.0 2.5 3.0 35 4.0 4.5 5.0
Rounds

FIGURE 21. Convergence of the ResNet-50 model in FL system with
5 rounds using CIC-IDS-2017 and involving 100 users.

practical for limited-resource environments. Furthermore,
we measured the performance of our method with various
scenarios and showed that it is adaptable to different settings
of FL, different datasets, and feature extractors.

However, we should also acknowledge the existing
technical challenges and difficulties of applying FL tech-
niques, such as non-independent and identically distributed
(Non-IID) datasets and privacy issues. Therefore, in future
work, we plan to address the problem of Non-IID datasets,
which can affect the performance and convergence of FL,
and tackle some privacy issues such as poisoning attacks,
where malicious agents can inject false data or labels
to compromise the global model, and honest-but-curious
servers, where the central authority can infer sensitive
information from the local models. Additionally, we aim
to explore the applicability of our approach to specific
network environments with unique security requirements,
including Industrial Control Systems (ICS). This future work
will further enhance the versatility of Lightweight-Fed-
NIDS across diverse network infrastructures, from general

VOLUME 12, 2024

IT networks to specialized operational technology environ-
ments. By adapting our framework to the stringent real-time
and reliability demands of ICS, we can potentially address
critical infrastructure security challenges while maintaining
the privacy and efficiency benefits of our federated learning
approach.

In conclusion, Lightweight-Fed-NIDS offers a promising
approach to network intrusion detection that balances high
performance with computational efficiency. By leveraging
federated learning and model pruning, our framework
addresses key challenges in modern network security, paving
the way for more robust and adaptable NIDS solutions in
various network environments.

APPENDIX

In this section, we present supplementary experiments
focused on assessing the convergence of models utilizing
ResNet-50 and ResNet-100 feature extractors, in con-
junction with the UNSW-NB2015, USTC-TFC2016, and
CICIDS-2017 datasets.

REFERENCES

[1]1 Y.Hu, A. Yang, H. Li, Y. Sun, and L. Sun, ““A survey of intrusion detection
on industrial control systems,” Int. J. Distrib. Sensor Netw., vol. 14, no. 8,
Aug. 2018, Art. no. 155014771879461, doi: 10.1177/1550147718794615.

[2] B.Li, Y. Wu, J. Song, R. Lu, T. Li, and L. Zhao, “DeepFed: Federated
deep learning for intrusion detection in industrial cyber—physical systems,”
IEEE Trans. Ind. Informat., vol. 17, no. 8, pp. 5615-5624, Aug. 2021, doi:
10.1109/T11.2020.3023430.

[3] T.T.Huong, T. P. Bac, D. M. Long, T. D. Luong, N. M. Dan, L. A. Quang,
L. T. Cong, B. D. Thang, and K. P. Tran, “Detecting cyberattacks using
anomaly detection in industrial control systems: A federated learning
approach,” Comput. Ind., vol. 132, Nov. 2021, Art. no. 103509, doi:
10.1016/j.compind.2021.103509.

[4] H.T. Truong, B. P. Ta, Q. A. Le, D. M. Nguyen, C. T. Le, H. X. Nguyen,
H. T. Do, H. T. Nguyen, and K. P. Tran, “Light-weight federated
learning-based anomaly detection for time-series data in industrial control
systems,” Comput. Ind., vol. 140, Sep. 2022, Art. no. 103692, doi:
10.1016/j.compind.2022.103692.

[5] A. Khraisat, I. Gondal, P. Vamplew, and J. Kamruzzaman, ‘“Survey

of intrusion detection systems: Techniques, datasets and challenges,”

Cybersecurity, vol. 2, no. 1, p. 20, Dec. 2019, doi: 10.1186/s42400-019-

0038-7.

R. Mitchell and I.-R. Chen, “A survey of intrusion detection techniques

for cyber-physical systems,” ACM Comput. Surv., vol. 46, no. 4, pp. 1-29,

Mar. 2014, doi: 10.1145/2542049.

J. Konecny, H. B. McMahan, F. X. Yu, P. Richtdrik, A. T. Suresh, and

D. Bacon, “Federated learning: Strategies for improving communication

efficiency,” 2016, arXiv:1610.05492.

[8] J.-S. Lee, Y.-C. Chen, C.-J. Chew, C.-L. Chen, T.-N. Huynh, and

C.-W. Kuo, “CoNN-IDS: Intrusion detection system based on collab-

orative neural networks and agile training,” Comput. Secur., vol. 122,

Nov. 2022, Art. no. 102908, doi: 10.1016/j.cose.2022.102908.

Y. Zhao, J. Chen, D. Wu, J. Teng, and S. Yu, “Multi-task network

anomaly detection using federated learning,” in Proc. 10th Int. Symp. Inf.

Commun. Technol. (SoICT), New York, NY, USA, 2019, pp. 273-279, doi:

10.1145/3368926.3369705.

[10] S. Agrawal, S. Sarkar, O. Aouedi, G. Yenduri, K. Piamrat, M. Alazab,
S. Bhattacharya, P. K. R. Maddikunta, and T. R. Gadekallu, “Federated
learning for intrusion detection system: Concepts, challenges and future
directions,” Comput. Commun., vol. 195, pp. 346-361, Nov. 2022, doi:
10.1016/j.comcom.2022.09.012.

[11] Z. Wang, Z. Li, D. He, and S. Chan, “A lightweight approach for
network intrusion detection in industrial cyber-physical systems based
on knowledge distillation and deep metric learning,” Expert Syst. Appl.,
vol. 206, Nov. 2022, Art. no. 117671, doi: 10.1016/j.eswa.2022.117671.

[6

—

[7

—

[9

—

172043

http://dx.doi.org/10.1177/1550147718794615
http://dx.doi.org/10.1109/TII.2020.3023430
http://dx.doi.org/10.1016/j.compind.2021.103509
http://dx.doi.org/10.1016/j.compind.2022.103692
http://dx.doi.org/10.1186/s42400-019-0038-7
http://dx.doi.org/10.1186/s42400-019-0038-7
http://dx.doi.org/10.1145/2542049
http://dx.doi.org/10.1016/j.cose.2022.102908
http://dx.doi.org/10.1145/3368926.3369705
http://dx.doi.org/10.1016/j.comcom.2022.09.012
http://dx.doi.org/10.1016/j.eswa.2022.117671

IEEE Access

A. Bouayad et al.

: Lightweight Federated Learning for Efficient Network Intrusion Detection

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

R. A. Sater and A. B. Hamza, “A federated learning approach to anomaly
detection in smart buildings,” ACM Trans. Internet Things, vol. 2, no. 4,
pp. 1-23, Nov. 2021, doi: 10.1145/3467981.

D. Wu, Y. Deng, and M. Li, “FL-MGVN: Federated learning for anomaly
detection using mixed Gaussian variational self-encoding network,” Inf.
Process. Manage., vol. 59, no. 2, Mar. 2022, Art. no. 102839, doi:
10.1016/j.ipm.2021.102839.

S. Anwar, K. Hwang, and W. Sung, ‘“Structured pruning of deep
convolutional neural networks,” ACM J. Emerg. Technol. Comput. Syst.,
vol. 13, no. 3, pp. 1-18, Jul. 2017, doi: 10.1145/3005348.

G. Fang, X. Ma, M. Song, M. Bi Mi, and X. Wang, “DepGraph: Towards
any structural pruning,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Vancouver, BC, Canada, Jun. 2023, pp. 16091-16101,
doi: 10.1109/CVPR52729.2023.01544.

N. Liu, X. Ma, Z. Xu, Y. Wang, J. Tang, and J. Ye, “AutoCompress: An
automatic DNN structured pruning framework for ultra-high compression
rates,” in Proc. 34th AAAI Conf. Artif. Intell. (AAAI) 32nd Innov. Appl.
Artif. Intell. Conf. (IAAI) 10th AAAI Symp. Educ. Adv. Artif. Intell.
(EAAI), Apr. 2020, vol. 34, no. 4, pp. 4876-4883. [Online]. Available:
https://ojs.aaai.org/index.php/AA Al/article/view/5924

M. Xia, Z. Zhong, and D. Chen, ““Structured pruning learns compact and
accurate models,” in Proc. 60th Annu. Meeting Assoc. Comput. Linguistics
(ACL), Dublin, Ireland, S. Muresan, P. Nakov, and A. Villavicencio,
Eds., Stroudsburg, PA, USA: Association for Computational Linguistics,
May 2022, pp. 1513-1528, doi: 10.18653/v1/2022.acl-long.107.

A. Bragagnolo and C. A. Barbano, “Simplify: A Python library for
optimizing pruned neural networks,” SoftwareX, vol. 17, Jan. 2022,
Art. no. 100907, doi: 10.1016/j.s0ftx.2021.100907.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” 2015, arXiv:1512.03385.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in Proc. 3rd Int. Conf. Learn. Represent.
(ICLR), San Diego, CA, USA, Y. Bengio and Y. LeCun, Eds., May 2015,
pp. 1-14.

I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward generating a
new intrusion detection dataset and intrusion traffic characterization,” in
Proc. 4th Int. Conf. Inf. Syst. Secur. Privacy, Funchal, Portugal, P. Mori,
S. Furnell, and O. Camp, Eds., Setubal, Portugal: SciTePress, Jan. 2018,
pp. 108-116, doi: 10.5220/0006639801080116.

N. Moustafa and J. Slay, “UNSW-NB15: A comprehensive data set for
network intrusion detection systems (UNSW-NB15 network data set),” in
Proc. Mil. Commun. Inf. Syst. Conf. (MilCIS), Canberra, ACT, Australia,
Nov. 2015, pp. 1-6, doi: 10.1109/MILCIS.2015.7348942.

W. Wang, M. Zhu, X. Zeng, X. Ye, and Y. Sheng, “Malware traffic
classification using convolutional neural network for representation
learning,” in Proc. Int. Conf. Inf. Netw. (ICOIN), Jan. 2017, pp. 712-717.
A. H. Lashkari, G. D. Gil, M. S. I. Mamun, and A. A. Ghorbani,
“Characterization of tor traffic using time based features,” in Proc. 3rd
Int. Conf. Inf. Syst. Secur. Privacy, Porto, Portugal, P. Mori, S. Furnell, and
O. Camp, Eds., Setibal, Portugal: SciTePress, Feb. 2017, pp. 253-262, doi:
10.5220/0006105602530262.

G. Draper-Gil, A. H. Lashkari, M. S. I. Mamun, and A. A. Ghorbani,
“Characterization of encrypted and VPN traffic using time-related
features,” in Proc. 2nd Int. Conf. Inf. Syst. Secur. Privacy (ICISSP),
Rome, Italy. Setibal, Portugal: SciTePress, Feb. 2016, pp. 407-414, doi:
10.5220/0005740704070414.

S. Agrawal, A. Chowdhuri, S. Sarkar, R. Selvanambi, and T. R. Gadekallu,
“Temporal weighted averaging for asynchronous federated intrusion
detection systems,” Comput. Intell. Neurosci., vol. 2021, no. 1, pp. 1-10,
Jan. 2021.

Z. Zhang, Y. Zhang, D. Guo, L. Yao, and Z. Li, “SecFedNIDS: Robust
defense for poisoning attack against federated learning-based network
intrusion detection system,” Future Gener. Comput. Syst., vol. 134,
pp. 154-169, Sep. 2022, doi: 10.1016/j.future.2022.04.010.

D.Man, F. Zeng, W. Yang, M. Yu, J. Lv, and Y. Wang, “Intelligent intrusion
detection based on federated learning for edge-assisted Internet of Things,”
Secur. Commun. Netw., vol. 2021, pp. 1-11, Oct. 2021.

W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured
sparsity in deep neural networks,” in Proc. Adv. Neural Inf. Process. Syst.,
vol. 29, Barcelona, Spain, D. D. Lee, M. Sugiyama, U. von Luxburg,
I. Guyon, and R. Garnett, Eds., Dec. 2016, pp.2074-2082.
[Online]. Available: https://proceedings.neurips.cc/paper/2016/hash/
41b£fd20a38bb1b0bec75acf0845530a7-Abstract.html

172044

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

(42]

[43]

[44]

(45]

[46]

C. Louizos, M. Welling, and D. P. Kingma, “Learning sparse neural
networks through Lg regularization,” 2017, arXiv:1712.01312.

E. Tartaglione, A. Bragagnolo, F. Odierna, A. Fiandrotti, and M. Grangetto,
“SeReNe: Sensitivity-based regularization of neurons for structured
sparsity in neural networks,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 33, no. 12, pp. 7237-7250, Dec. 2022.

K. Ullrich, E. Meeds, and M. Welling, “Soft weight-sharing for neural
network compression,” in Proc. 5th Int. Conf. Learn. Represent. (ICLR),
Toulon, France, Apr. 2017, pp. 1-16. [Online]. Available: https://
openreview.net/forum?id=HJGwcKclx

J. Frankle and M. Carbin, “The lottery ticket hypothesis: Finding sparse,
trainable neural networks,” in Proc. 7th Int. Conf. Learn. Represent.
(ICLR), New Orleans, LA, USA, May 2019, pp. 1-42. [Online]. Available:
https://openreview.net/forum?id=rJ1-b3RcF7

J. Su, Y. Chen, T. Cai, T. Wu, R. Gao, L. Wang, and J. D. Lee,
“Sanity-checking pruning methods: Random tickets can win the jackpot,”
in Proc. Adv. Neural Inf. Process. Syst., vol. 33, H. Larochelle,
M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, Eds., Dec. 2020,
pp. 1-12. [Online]. Available: https://proceedings.neurips.cc/paper/2020/
hash/eae27d77ca20db309e056e3d2dcd7d69-Abstract.html

H. Tanaka, D. Kunin, D. L. K. Yamins, and S. Ganguli, ‘“Pruning
neural networks without any data by iteratively conserving synaptic
flow,” in Proc. Adv. Neural Inf. Process. Syst., vol. 33, H. Larochelle,
M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, Eds., Dec. 2020,
pp- 1-13. [Online]. Available: https://proceedings.neurips.cc/paper/2020/
hash/46a4378f835dc8040c8057beb6a2da52-Abstract.html

Y. Cai, W. Hua, H. Chen, G. E. Suh, C. De Sa, and Z. Zhang, “Structured
pruning is all you need for pruning CNNs at initialization,” 2022,
arXiv:2203.02549.

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“MobileNetV2: Inverted residuals and linear bottlenecks,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Salt Lake City,
UT, USA, Jun. 2018, pp. 4510-4520. [Online]. Available: http://
openaccess.thecvf.com/content_cvpr_2018/html/Sandler_MobileNetV2_
Inverted_Residuals_CVPR_2018_paper.html

M. Tan and Q. Le, “EfficientNet: Rethinking model scaling for convo-
lutional neural networks,” in Proc. Int. Conf. Mach. Learn. (ICML), in
Proceedings of Machine Learning Research, vol. 97, Long Beach, CA,
USA, K. Chaudhuri and R. Salakhutdinov, Eds., 2019, pp. 6105-6114.
[Online]. Available: http://proceedings.mlr.press/v97/tan19a.html

G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and
R. R. Salakhutdinov, “Improving neural networks by preventing co-
adaptation of feature detectors,” 2012, arXiv:1207.0580.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Miami, FL, USA, Jun. 2009, pp. 248-255, doi:
10.1109/CVPR.2009.5206848.

K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on ImageNet classification,” in Proc.
IEEE Int. Conf. Comput. Vis. (ICCV), Dec. 2015, pp. 1026-1034.

S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” in Proc. 32nd Int. Conf.
Mach. Learn. (ICML), vol. 37, Lille, France, F. R. Bach and D. M. Blei,
Eds., Jul. 2015, pp. 448-456. [Online]. Available: http://proceedings.mlr.
press/v37/ioffel5.html

Z. Aouini and A. Pekar, “Nfstream: A flexible network data analysis
framework,” Comput. Netw., vol. 204, Feb. 2022, Art. no. 108719.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S$1389128621005739

H. Alami, M. J. Idrissi, A. E. Mahdaouy, A. Bouayad, Z. Yartaoui,
and I. Berrada, “Investigating domain adaptation for network intrusion
detection,” in Proc. 10th Int. Conf. Wireless Netw. Mobile Commun.
(WINCOM), Oct. 2023, pp. 1-7.

P. Sun, P. Liu, Q. Li, C. Liu, X. Lu, R. Hao, and J. Chen, “DL-
IDS: Extracting features using CNN-LSTM hybrid network for intrusion
detection system,” Secur. Commun. Netw., vol. 2020, Aug. 2020,
Art. no. 8890306, doi: 10.1155/2020/8890306.

X. Liu, Z. Tang, and B. Yang, “Predicting network attacks with
CNN by constructing images from NetFlow data,” in Proc. IEEE
IEEE 5th Intl Conf. Big Data Secur. Cloud (BigDataSecurity) Intl
Conf. High Perform. Smart Comput., (HPSC) IEEE Intl Conf. Intell.
Data Secur. (IDS), Washington, DC, USA, May 2019, pp. 61-66, doi:
10.1109/BigDataSecurity-HPSC-IDS.2019.00022.

VOLUME 12, 2024

http://dx.doi.org/10.1145/3467981
http://dx.doi.org/10.1016/j.ipm.2021.102839
http://dx.doi.org/10.1145/3005348
http://dx.doi.org/10.1109/CVPR52729.2023.01544
http://dx.doi.org/10.18653/v1/2022.acl-long.107
http://dx.doi.org/10.1016/j.softx.2021.100907
http://dx.doi.org/10.5220/0006639801080116
http://dx.doi.org/10.1109/MILCIS.2015.7348942
http://dx.doi.org/10.5220/0006105602530262
http://dx.doi.org/10.5220/0005740704070414
http://dx.doi.org/10.1016/j.future.2022.04.010
http://dx.doi.org/10.1109/CVPR.2009.5206848
http://dx.doi.org/10.1155/2020/8890306
http://dx.doi.org/10.1109/BigDataSecurity-HPSC-IDS.2019.00022

A. Bouayad et al.: Lightweight Federated Learning for Efficient Network Intrusion Detection

IEEE Access

[47]

[48]

[49]

[50]

[51]

V. Pham, E. Seo, and T.-M. Chung, ‘““Lightweight convolutional neural
network based intrusion detection system,” J. Commun., vol. 15, no. 11,
pp. 808-817, 2020, doi: 10.12720/jcm.15.11.808-817.

T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and
V. Smith, “Federated optimization in heterogeneous networks,” in
Proc. Mach. Learn. Syst. (MLSys), Austin, TX, USA, 1. S. Dhillon,
D. S. Papailiopoulos, and V. Sze, Eds., Mar. 2020, pp. 1-22. [Online].
Available: https://proceedings.mlsys.org/book/316.pdf

E. Im and K. A. Yelick, “Optimizing sparse matrix vector multiplication
on SMP,” in Proc. 9th SIAM Conf. Parallel Process. Sci. Comput. (PPSC),
San Antonio, TX, USA, Mar. 1999, pp. 1-9.

J. Dongarraxz, A. Lumsdaine, X. Niu, R. Pozoz, and K. Remingtonx,
“A sparse matrix library in C++ for high performance architectures,” in
Proc. 2nd Object Oriented Numerics Conf., 1994, pp. 214-218.

A. Ekambaram and E. Montagne, “An alternative compressed storage
format for sparse matrices,” in Proc. 18th Int. Symp. Comput. Inf. Sci.
(ISCIS), in Lecture Notes in Computer Science, vol. 2869, Antalya, Turkey,
A. Yazici and C. Sener, Eds., Cham, Switzerland: Springer, Nov. 2003,
pp. 196-203, doi: 10.1007/978-3-540-39737-3_25.

ABDELHAK BOUAYAD received the M.S. degree
in big data analytics and smart systems from
Sidi Mohamed Ben Abdellah University, Fes,
Morocco, in 2018. He is currently pursuing the
Ph.D. degree in data science, networking and algo-
rithmic thinking with Mohammed VI Polytechnic
University (UM6P), Morocco. His research inter-
ests include privacy-preserving machine learning,
network intrusion detection systems, and federated
learning.

VOLUME 12, 2024

HAMZA ALAMI received the Ph.D. degree in
computer science from Ibn Tofail University,
Morocco, in 2021. He is currently an Assistant
Professor with Sidi Mohammed Ben Abdellah
University (USMBA), Fes, Morocco. His research
interests include natural language processing,
distributed learning, network intrusion detection,
and information extraction.

MERYEM JANATI IDRISSI received the M.S.
degree in big data analytics and smart systems
from Sidi Mohamed Ben Abdellah University, Fes,
Morocco, in 2018, and the Ph.D. degree in data
science, networking and algorithmic thinking from
Mohammed VI Polytechnic University (UM6P),
Morocco. Her current research interests include
intrusion detection, federated learning, and privacy
preserving.

ISMAIL BERRADA received the Ph.D. degree
in computer science from the University of
Bordeaux 1, France, in 2005. He is currently
an Associate Professor in computer science with
Mohammed VI Polytechnic University (UM6P),
Morocco. He worked for five years as an Assistant
Professor at the University of La Rochelle, France,
and ten years at Sidi Mohammed Ben Abdellah
University (USMBA), Fes, Morocco. His research
interests include artificial intelligence (AI) appli-

cations in multiple domains, such as cognitive radio networks, radio resource
management, vehicular ad hoc networks, road safety, software testing, and

172045

http://dx.doi.org/10.12720/jcm.15.11.808-817
http://dx.doi.org/10.1007/978-3-540-39737-3_25

